The biota in lowland Mauritius. Julian Hume;

As stated by David Quammen, “the story of the dodo is obscured by a fog of uncertainties.” By about 1690, if not earlier, it was extinct in its area of endemism, Mauritius. Starting around 1500 with the arrival of Europeans, Mauritius, Rodrigues, and Réunion in the Indian Ocean lost 33 species of birds, including the dodo, 30 species of land snails, and 11 reptiles.

Dodo, Raphus cucullatus
Dodo, Raphus cucullatus, Attr. Roelandt Savery, ca. 1626. This oil on canvas is a most famous paintig of the dodo attributed to the Flemish painter, R. Savery. Taking this painting as a guide, Richard Owen placed the bones arranging them over it to get the first scientific description of the fossil remains, published in 1866. Natural History Museum, London, UK.


As other large pigeons, especially on islands, dodos probably relied extensively on fruit food. A famous iconic story relates the extinction of dodos, to the almost co-extinction of a seemingly preferred fruiting tree, Sideroxylon grandifolium (formerly Calvaria major, Sapotaceae, the tambalacoque tree), thought to have relied exclusively on these birds for seed dispersal. The tree is an endemic species. According to historical records, it had once been common in upland Mauritian forests and was often exploited for lumber. According to the original hypothesis of coextinction, set by Temple (1977) based on a traditional belief of Mauritius people: “In response to intense exploitation of its fruits by dodos, S. grandifolium evolved an extremely thick endocarp as a protection for its seeds; seeds surrounded by thin-walled pits would have been destroyed in the dodo’s gizzard. These specialized, thick-walled pits could withstand ingestion by dodos, but the seeds within were unable to germinate without first being abraded and scarified in the gizzard of a dodo.

Dodos were large-bodied birds, averaging- according to the most recent estimates- 10 kg and reaching up to 12 kg (previous estimates reported up to ~21 kg). The beak was very robust, ~5 cm gape width, probably apt to handle and swallow very large fruits as well as other plant material.

Dodo XVII century drawings
Seventeenth century depictions of Raphus cucullatus. a, A lean dodo (C. Clusius 1605). b, A fat dodo by A. Van de Venne (1626). Recent mass estimates (Angst et al. 2011) are in better agreement with a than with b, supporting the idea that pictures of extremely fat dodos are exaggerations, not necessarily based on living dodos and often copied from other artists. See Strickland & Melville (1848) for details and additional illustrations.

Coextinctions are extremely difficult to demonstrate, especially for interactions involving, e.g., small species (e.g., ectoparasites and hosts) and species involved in generalized interactions (plant-animal mutualisms for pollination and seed dispersal). Yet we have many evidences for functional coextinctions, happening when species become very rare (even extinct) and their ecological roles are lost. Dodos and tambalacoques probably illustrate this. S. grandifolium has persisted on the island likely because of haphazard dispersal by other dispersal agents (e.g., giant skinks and turtles) and rare instances of runoff, etc. Seeds have been found germinating in some cases, yet with very low proportions; while pulp removal was required for germination, it appears that seed scarification does not improve germination significantly. And dodos may had the ability to crack the hard seeds during digestion. Yet there is no proper test available about of all these aspects, as far as I know.

Tambalocoque seed
A tambalocoque (Sideroxylon grandiflorum, Sapotaceae) seed.

The tree still remains in relict stands but juveniles can be found. The dispersal has certainly collapsed, yet with no final effect entailing the extinction of the tree on the island. Probably many local stands of S. grandifolium have disappeared since dodo’s extinction ca. 400 yr ago. Recent analyses of rich fossil plant and animal remains in lowland Mauritius include many S. grandifolium seeds associated with dodo and giant turtle remains. But it seems we are not in front of a tightly coevolved one-to-one instance of pairwise coevolution. Most likely, not simply the dodo extinction contributed to the rarity of tamabalacoques on Mauritius (and several other large-seeded trees): competition with exotic species, were most likely fundamental. Introduced species included Javan deer, goat, pig, crab-eating macaque, and black rat were clear contributors for the dodo’s extinction by destroying the understory vegetation, competing for food sources, and, in the case of the pig, macaque, and black rat, direct predation on eggs and chicks.

Fac-simile of Roland Savery’s figure of the Dodo in his picture of the Fall of Adam, in the Royal Gallery at Berlin.

Independently of whether the initial reports of coextinction due to loss of the mutualistic dodo were wrong, or biased, or both, the system reflects what happens when ecological interactions are lost: we simply see highly altered systems that remain extremely difficult- or even impossible- to resurrect. And oftentimes the extinction of interactions precedes by a long time the extinction of species, so that what we see is the pervasive effect of the debt of lost interactions.

  • Angst, D., Buffetaut, E. & Abourachid, A. (2011) The end of the fat dodo? A new mass estimate for Raphus cucullatus. Naturwissenschaften, 98, 233–236.
  • Herhey, D. (2006) The widespread misconception that the tambalacoque or Calvaria tree absolutely required the dodo bird for its seeds to germinate. Plant Science Bulletin, 50, 105–109.
  • Oudemans, A.C. (1917). Dodo-Studien. Johannes Muller, Amsterdam.
  • Pimm, S.L. (2002) The dodo went extinct (and other ecological myths). Annals of the Missouri Botanical Garden, 190–198.
  • Quammen, D. (1996) The Song of the Dodo. Scribner, NY, USA.
  • Rijsdijk, K.F., Hume, J.P., Louw, P.G.B.D., Meijer, H.J.M., Janoo, A., De Boer, et al. (2016) A review of the dodo and its ecosystem: insights from a vertebrate concentration Lagerstätte in Mauritius. Journal of Vertebrate Paleontology, 35, 3–20.
  • Strickland, H.E., Melville, A.G. (1848) Dodo and its kindred. History, affinities, and osteology of the dodo, solitaire, and other extinct birds of the islands Mauritius, Rodriguez, and Bourbon. Reeve, Benham and Reeve, London, UK.
  • Temple, S.A. (1977) Plant-animal mutualism: coevolution with dodo leads to near extinction of plant. Science, 197, 885–886.
  • Witmer, M.C. & Cheke, A.S. (1991) The dodo and the tambalacoque tree: an obligate mutualism reconsidered. Oikos, 61, 133–137.
    Text: Pedro Jordano. Illustrations and photos, from digitized original books at Biodiversity Heritage Library, and Spanish National Library. Also, photos by M. Galetti and P. Jordano.


Ginkgoes and dodos are my two favorite icons of “ghost” mutualistic interactions. So, I had the two last posts on megafauna and extinct interactions dedicated to them.

There are only five living groups of seed plants, and ginkgo is one of them; just a single species. Ginkgoes (Ginkgo biloba, Ginkgoaceae) have fleshy “fruits” and their “seeds” were dispersed by animals including, most probably, from dinosaurs to Pleistocene megafauna, and to extant frugivores nowadays. The reason is that the ginkgo has survived on Earth for a really extended period of time, with the earliest fossils of ginkgo-like plants dated more than 200 million years ago. Among the many ginkgo-like tree species, only Ginkgo biloba has survived (up to five Ginkgo species are known as fossils).


Living ginkgo very nearly went extinct, in fact, as of two million years ago, existing in only a small area in eastern China, the Tian Mu Shan mountains in Guizhou Province. Ginkgoes have then survived just by human intervention, with an assisted dissemination for cultivation starting at least 1200 yr ago by Buddhist monks, and introduced to Europe just by 1730-1750.

From Engelbert Kaempfer in his Amoenitates, 1712: the first illustration of ginkgo by a Western botanist.

Most likely a combination of extreme dispersal limitation due to lack of efficient seed dispersers combined with large-scale climate shifts and habitat modification contributed to their nearly extinction in the wild. Contrary to other tree species, retractions to small refugia populations failed to recover the original range, especially in North America and Europe. As with other megafauna-dependent species, it resprouts vigorously from buds buried in its underground parts, and human use certainly rescued the ginkgoes, probably because of their nutritous “nut”. In Peter Crane’s words: “It is irrepressible; its capacity for self-preservation has helped it survive through millions of generations.”

We know very little about how seed dispersal works in living ginkgo. The fleshy “fruit” is really the mature, fertilized ovule with a a three-layered integument: a fleshy outer sarcotesta, a stony inner sclerotesta, and a thin endotesta. Its smelly, large seeds (20-30 mm x 16-24 mm) are one of its most well-known and distinctive features: the seed’s soft outer layer starts to break down after a few days on the ground and produces butyric acid, CH3(CH2)2COOH giving it the “interesting” odor. Germination improves after the fleshy seed coat has been removed by passing through the gut of an animal or being teared-off. In one of the potentially wild ginkgo populations in China it is documented that the seeds are eaten by a wild cat, and in Japan they are eaten by badgers. Yet, there were very few seedlings in this population, located in 1989 by Del Tredici, despite good fruiting. People harvested the nuts, which are very nutritious, as well as Pallas’s squirrels (Callosciurus erythraeus), which also may act as good dispersers by scatter-hoarding the seeds.

Yet who were the seed dispersers that mediated the range expansion of ginkgoes over continents and islands (Japan) before human-mediated propagation? As in other megafauna-dependent plants, most likely a combination of dispersal agents, including large and medium-sized mammals and, well before that, dinosaurs. As with other extant large-‘seeded’ Coniferopsida like Cephalotaxus and Torreya with very large seeds, scatter-hoarding animals like the extinct multituberculates (i.e., the ‘rodents’ of the Mesozoic; g. Ptilodus) would have played a role in active seed dispersal of ginkgoes by scatter-hoarding the seeds.

We can see ginkgoes as survivors with a long history of mutualistic interactions involving a diverse array of animals, whose actual diversity we can only speculate about, then replaced by extensive human use.

  • van Beek, T.A. (2003) Ginkgo biloba. CRC Press, NY.
  • Crane, P. (2013). Ginkgo. The tree that time forgot. Yale University Press, New Haven.
  • del Tredici, P. (1989) Ginkgos and multituberculates: evolutionary interactions in the Tertiary. Bio Systems, 22, 327–339.

Text: Pedro Jordano with excerpts from Del Tredici (1989) and Crane (2013). Illustrations: WikiMedia.

Megafauna in Madagascar


A scene in Madagascar in the late Pleistocene. From left to right: elephant bird (Aepyornis maximus), Malagasy giant rat (Hypogeomys antimena), melanistic giant fossa (Cryptoprocta spelea), monkey lemur (Archaeolemur), streaked tenrec (Hemicentetes), and koala lemur (Megaladapis).

Madagascar had a highly diversified megafauna, as also occurred in other islands, quickly becoming defaunated because of human action and habitat destruction, starting very recently, ca. 2000 yr BP. For example, the Spiny Thicket Ecoregion (STE) of SW Madagascar was home to numerous giant lemurs and other megafauna, including pygmy hippopotamuses, giant tortoises, elephant birds, and large euplerid carnivores.

Island frugivore faunas are much more phylogenetically diverse than continental ones; their frugivore assemblages are known as disharmonic because a given plant species may depend on distinct sorts of animal seed dispersers (e.g., lizards, birds, mammals) quite distinct in evolutionary history and likely not being complementary in their ecological functions. For example, only one-third of the lemur species which earlier occupied the spiny thicket ecoregion survive today. The extinct lemurs occupied a wide range of niches, often distinct from those filled by non-primates. Many of the now-extinct lemurs regularly exploited habitats that were drier than the gallery forests in which the remaining lemurs of this ecoregion are most often protected and studied. Recent evidence using stable isotope biogeochemistry has shown that most extinct lemurs fed predominantly on C3 plants and some were likely the main dispersers of the large seeds of native C3 trees; others included CAM and/or C4 plants in their diets.
While the negative effects on seed dispersal of Pleistocene megafauna extinction in continental areas were probably buffered by complementary dispersers (e.g., scatter-hoarders, domestic megafauna, human use), island assemblages had not this option. Thus, if we seek instances of actual co-extinction of co-dependent frugivores and their food plants we may probably have to resort to islands, especially oceanic islands, or extreme habitats (e.g., deserts) where the mutualistic partners are highly disharmonic.

  • Crowley, B.E., Godfrey, L.R. & Irwin, M.T. (2011) A glance to the past: subfossils, stable isotopes, seed dispersal, and lemur species loss in Southern Madagascar. American Journal of Primatology, 73, 25–37.
  • Grubb, P.J. (2003) Interpreting some outstanding features of the flora and vegetation of Madagascar. Perspectives in Plant Ecology Evolution and Systematics, 6, 125–146.
  • Jungers, W.L., Demes, B. & Godfrey, L.R. (2007) How big were the “‘giant’” extinct lemurs of madagascar? J. G. Fleagle, C. C. Gilbert (eds.), Elwyn Simons: A Search for Origins. Springer, pp: 1–18.
  • Shapcott, A., Rakotoarinivo, M., Smith, R.J., Lysakova, G., Fay, M.F. & Dransfield, J. (2007) Can we bring Madagascar’s critically endangered palms back from the brink? Genetics, ecology and conservation of the critically endangered palm Beccariophoenix madagascariensis. Botanical Journal of the Linnean Society, 154, 589–608.

Text: Pedro Jordano; excerpts fromCrowley et al. 2011.
Illustration: William Snyder (Pleistocene Madagascar).